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Abstract. We present detailed surface elevation measurements for the McMurdo Dry Valleys, Antarctica de-
rived from aerial lidar surveys flown in the austral summer of 2014–2015 as part of an effort to understand
geomorphic changes over the past decade. Lidar return density varied from 2 to > 10 returns m−2 with an aver-
age of about 5 returns m−2. Vertical and horizontal accuracies are estimated to be 7 and 3 cm, respectively. In
addition to our intended targets, other ad hoc regions were also surveyed including the Pegasus flight facility and
two regions on Ross Island, McMurdo Station, Scott Base (and surroundings), and the coastal margin between
Cape Royds and Cape Evans. These data are included in this report and data release. The combined data are
freely available at https://doi.org/10.5069/G9D50JX3.

1 Introduction

The McMurdo Dry Valleys (MDV) are a polar desert lo-
cated along the Ross Sea coast of East Antarctica (∼ 77.5◦ S,
∼ 162.5◦ E; Fig. 1). These valleys are not covered by the
East Antarctic ice sheet due to the blockage to flow by the
Transantarctic Mountains and the severe rain shadow caused
by these mountains (Chinn, 1981; Fountain et al., 2010). The
valleys are a mosaic of gravelly sandy soil, glaciers, ice-
covered lakes, and ephemeral melt streams that flow from
the glaciers. Permafrost is ubiquitous, with active layers up
to 75 cm deep (Bockheim et al., 2007). This region is of in-
terest to geologists and biologists. It is one of the few re-
gions in Antarctica with exposed bedrock from which the
tectonic history of the continent can be explored (Gleadow
and Fitzgerald, 1987; Marsh, 2004). The bare landscape also
provides evidence for past glaciations, a critical look into the
past behavior of the Antarctic Ice Sheet (Brook et al., 1993;

Denton and Hughes, 2000; Hall et al., 2010). The cold dry
environment of the MDV hosts an unusual terrestrial habi-
tat dominated by microbial life (Adams et al., 2006; Cary
et al., 2010) and serves as a useful terrestrial analogue for
Martian conditions (Kounaves et al., 2010; Levy et al., 2008;
Samarkin et al., 2010).

Over the last decade the topography of the coastal mar-
gins has been changing due to melting of subsurface deposits
of massive ice (Bindschadler et al., 2008; Fountain et al.,
2014). For example, the Garwood River in Garwood Val-
ley has rapidly eroded through ice-cemented permafrost and
buried massive ice (Levy et al., 2013) sometime after De-
cember 2000. In Taylor Valley, observations in 2014–2015
along Commonwealth Stream showed a similar erosive be-
havior. Other streams in Taylor Valley, including Crescent,
Lost Seal, and Lawson, have exhibited recent bank under-
cutting (Gooseff et al., 2016). Over the 50+ years of obser-
vations these changes are the first of their kind. Also, we
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Figure 1. Landsat image mosaic of Antarctica, LIMA (Bind-
schadler et al., 2008), map of the central McMurdo Dry Valleys with
locations of UNAVCO fixed Global Positioning System ground sta-
tions.

have observed glacier thinning where significant sediment
deposits have collected on the surface (Fountain et al., 2014).

Common to all changes is the occurrence of a relatively
thin veneer of sediment over massive ice. In the case of
the valley floor the sediment veneer is ∼ 10−1 m in thick-
ness, whereas on the glaciers it is patchy, with thicknesses
of ∼ 10−3 to 10−2 m. In addition, anecdotal observations
point to large changes in other stream channels and increas-
ing roughness and perhaps thinning of the lower elevations
of some glaciers.

To assess the magnitude and spatial distribution of land-
scape changes, the valleys were surveyed using a high-
resolution airborne topographic lidar during the austral sum-
mer of 2014–2015 and the results were compared to an ear-
lier survey flown in the summer of 2001–2002 (Csatho et al.,
2005; Schenk et al., 2004). Our working hypothesis is that
landscape change is limited to the coastal thaw zone where
maximum summer temperatures exceed −5 ◦C (Fountain et
al., 2014; Marchant and Head, 2007). Here we summarize
the field campaign of 2014–2015, data processing, and the
point cloud of elevation data covering about 3300 km2 of the
MDV, and 264 km2 of areas of interest nearby, all of which
have been made openly available to the research community.

2 Approach

In early December 2014, the lidar personnel from the Na-
tional Science Foundation’s National Center for Airborne
Laser Mapping (NCALM) and the science team from Port-
land State University arrived at McMurdo Station for an 8-
week field season. Two airborne laser scanner (ALS) instru-
ments were used in the survey. The main instrument was
the Titan multiwave (MW), a newly designed multispec-
tral ALS based on performance specifications provided by
NCALM, with an integrated digital camera manufactured for

NCALM by Teledyne Optech, Inc., Toronto, Canada. It is
the first operational ALS designed to perform mapping us-
ing three different wavelengths simultaneously through the
same scanning mechanism (Fernandez-Diaz et al., 2016a, b).
Two wavelengths are in the near-infrared spectrum (1550 and
1064 nm) and the third is in the visible spectrum (532 nm).
This three-wavelength capability enables the Titan MW to
map elevations of solid ground (topography) and depths be-
low water surface (bathymetry – but not available for reasons
described later) simultaneously. This three-channel spectral
information can be combined into false-color laser backscat-
ter images, which improves the ability to distinguish between
types of land cover. The system is mounted under the aircraft,
scanning side to side at an angle of up to±30◦ off nadir, pro-
ducing a sawtooth ground pattern. There are 1064 nm chan-
nel points at nadir and 1550 and 532 nm channel point 3.5
and 7◦ forward of nadir, respectively. Each channel can ac-
quire up to 300 000 measurements per second. However, the
nominal operation pulse repetition rate for the MDV survey
was 100 kHz per channel. For some extreme regions where
the terrain relief was extremely high, the Titan MW had to
be operated at lower pulse rates of 75 and 50 kHz. For each
pulse the Titan only records first, second, third, and last re-
turns. The Titan scanner was operated at an angle of ±30◦

and a frequency of 20 Hz.
The advantage of Titan MW over traditional ALS sys-

tems for mapping regions like the MDV where areas of
soil and snow overlap is the multiple channels at different
wavelengths. A traditional ALS operating at 1550 nm obtains
strong returns from the soil surfaces but may have difficulties
over ice and snow, which reflect less at that wavelength. The
additional 1064 and 532 nm channels have a better response
to snow. Also, three channels collecting data simultaneously
increases the data density compared to single-channel units.
However, a limitation of the Titan system is the maximum
range of ∼≤ 2 km.

The second ALS was an Optech Gemini airborne laser ter-
rain mapper (ALTM), which served as a backup to the Ti-
tan MW. The Gemini ALTM is a single-channel system that
uses 1064 nm laser pulses at repetition frequencies of 33 to
166 kHz and it can scan a swath of up to ±25◦ off nadir.
While the return densities obtained with the Gemini are lower
than those from the Titan MW system, it has the advantage
of a longer maximum range of ∼≤ 4 km. The Gemini was
operated at pulse rate frequency between 70 and 100 kHz,
its scanner ran at ±25◦ and a frequency of 35 Hz; its beam
divergence was set at 0.25 milliradians.

The DiMAC Ultralight camera, integrated into the Titan
MW system, acquires digital vertical aerial photographs dur-
ing the laser scanning and together they can produce digital
orthophotographs. The camera uses a charged coupled de-
vice (CCD) with 60 megapixels, each with a dimension of
6 µm× 6 µm. The pixels are arranged in an array of 8984
pixels oriented perpendicular to the flight direction and 6732
pixels along the flight direction, which translates to a CCD
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Figure 2. Examples of ice-mediated elevation changes in the McMurdo Dry Valleys. Disintegration of the lower ablation zone of the Wright
Lower Glacier, Wright Valley, (a) 1980 and (b) 2008. S is the sediment-covered part of the glacier, G is the relatively clean part of the glacier,
and L is Lake Brownworth. The dots just below the S in the 2008 photo are ice spires several meters tall with sediment-covered ablated
ice surrounding it, depicted in (c), photo: M. Sharp. (d) Ice cliff exposed by the eroding Garwood River. (e) Aerial view of Garwood River
incision and bank collapse. River flows right to left. Arrow points to where photos (f) and (g) were taken. (f) Recent incision; note color
differences. (g) The river has carved a thermokarst tunnel.

physical chip size of 5.39 cm× 4.04 cm. The image is formed
on the focal plane through a compound lens with a focal
length of 70 mm. The combination of lens and CCD array
yields a total field of view (FOV) of 42.1◦× 32.2◦ and a
ground sample distance of 0.0000825×flight height (∼ 5 cm
for nominal mission altitudes of 600 m above ground level).
The position of the CCD is adjusted during flight through a
piezo actuator to compensate for the motion of the aircraft
during an exposure, reducing pixel smear.

To derive accurate differential kinematic trajectories for
the ALS, a total of nine UNAVCO Global Positioning System
(GPS) stations were used as reference, recording data at a
rate of 1 Hz (Fig. 1). This network of GPS stations provided
sufficient coverage to ensure that the aircraft was no more
than 40 km from any station during mapping operations.

3 Results from the field campaign

The Titan MW ALS was mounted within a DHC-6 Twin Ot-
ter aircraft operated by Kenn Borek Air of Calgary, Canada,
under contract to the National Science Foundation. The air-
craft flew at a nominal speed of 65–70 m s−1 at a nominal
flight height of 600 m above the surface (actual flight heights
above terrain ranged between 400 and 2500 m). The footprint
of the laser beam was about 0.3 m for channels 1 and 2 and
about 0.6 m for channel 3 (Fig. 3).

Figure 3. Image of the Titan channel 3 (532 nm) laser footprint
captured by the digital camera over the floor of Wright Valley.

The aerial survey was planned to cover the entire 5000 km2

of the MDV but adverse weather conditions prevented com-
plete coverage. Fortunately, the prioritized valley bottoms
and regions previously scanned by NASA in 2001 were sur-
veyed and none of our science objectives were compromised.
Occasionally, the priority MDV targets were unavailable dur-
ing flight operations and nearby ad hoc regions of oppor-
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Figure 4. Flight lines for the new 2014–2015 survey (shown in red)
over the extent of the 2001 survey (shown in purple) digital eleva-
tion model hillshades. Base map is the Landsat Image Mosaic of
Antarctica (Bindschadler et al., 2008).

tunity were surveyed, including McMurdo Station and sur-
roundings, Pegasus Airfield, and the coastal area between
and including Cape Royds and Cape Evans. These ad hoc re-
gions, together with the MDV, totaled about 3600 km2 from
which 3564 km2 of elevation rasters of surveyed landscape
was produced (Fig. 4).

Reliability of the Titan MW system was good, with only
1 day lost due to an intermittent malfunction. A total of
109 aircraft engine-on hours was used. Of these, 94.7 h were
flying hours, which yielded a total of 50.9 laser-on hours
(47.4 h with Titan MW and 3.4 h with Gemini). A total of
42.5 billion laser shots were fired, of which about two-thirds
(28.7 billion) produced usable returns. The unusable returns
were primarily due to a saturation of channel 3 (532 nm)
of the Titan system. This channel is optimized for weak
returns to enhance the ability to see through clear water
(bathymetry). However, the detector was overwhelmed by
sunlight reflections off the steep valley walls and multipath
reflections produced by the highly reflective snow and ice.
This caused the detector to trigger spurious returns, saturat-
ing the ability of the sensor to record actual surface returns.
The remaining usable returns were equally divided between
channels 1 and 2. Returns from the outer 5◦ of either side of
the swath (scan angle cutoff) were also discarded to reduce
scan line artifacts.

Survey patterns were described as “mowing the lawn” as
the plane flew back and forth along the longitudinal axis of
each valley, with the goal of 50 % overlap with the prior
swath such that the edge of the newly acquired swath over-
laps from the edge to the center of the adjacent previously
flown swath. The separation between the flight lines was
∼ 350 m. Due to adverse weather 50 % lateral swath overlap
was not always possible.

After the aircraft landed, preliminary processing was per-
formed to examine the coverage and identify gaps to be re-

Figure 5. Return density map for the 2013–2014 lidar survey of the
McMurdo Dry Valleys. The units of density are returns m−2

× 10.
Base map is the Landsat Image Mosaic of Antarctica (Bindschadler
et al., 2008).

flown. The time between initial and final coverage depended
on weather. While the performance of Titan MW met most of
its design parameters, it was not able to detect usable returns
in the deeper parts of Taylor Valley because the safe flight
height above local terrain exceeded the range limit of the in-
strument. To survey these regions, the Gemini sensor was in-
stalled towards the end of the flying season and the data gaps
were closed. The resulting spatial point density of the laser
returns varied due to differences in flight height, weather,
and repeat coverage to close gaps (Fig. 5). Overall, the range
of unfiltered laser returns varied from 2 to > 10 returns m−2,
with an average of 4.7 returns m−2.

4 Final data processing

After returning from Antarctica the data were processed in
four main steps: trajectory determination, point cloud pro-
duction, point cloud processing, and elevation raster genera-
tion. The first step was to produce accurate differential tra-
jectories for the aircraft. Initially, the three-dimensional co-
ordinates for aircraft (sensor) position were derived from the
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Figure 6. Lidar point cloud strips and point cloud tiles illustrating how a large coverage area is broken down into tiles. (a) Five flight
strips over McMurdo Station; the strip point clouds have been rendered based on flight line and intensity. The yellow grid represents the
1 km× 1 km tiles into which the returns from the different strips will be binned. (b) Point clouds for four tiles. The tiled point clouds are
rendered based on flight line and intensity. The overlap between the different flight strips within each tile is evident on this rendering.

GPS stations using the KARS (Kinematic and Rapid Static)
software (Mader, 1996), taking data from one GPS station at
a time. For each flight its final trajectory in three dimensions
was derived by blending solutions from at least three GPS
stations. These data were then combined with orientation in-
formation collected from the inertial measurement unit, op-
erating at 200 kHz. We used a Kalman filter algorithm within
POSPac Mobile Mapping Suite version 7.1 (Applanix Cor-
poration) to combine these data. The final navigation solution
obtained is known as a smoothed best estimated trajectory
(SBET) and resulted in a binary file containing the sensor’s
position and orientation.

The second processing step, point cloud production, com-
bined the laser range data with the SBET to produce geo-
located point clouds of laser returns. The point cloud pro-
duction was performed with the sensor manufacturer’s pro-
prietary software LMS for the Titan MW and DASHmap for
the Gemini. Before producing the point cloud for the en-
tire project area, a small subset of the cloud was carefully
examined. This geographical subset was selected before the
data were collected to serve as a calibration and validation
(CAL/VAL) site. The CAL/VAL site has structural and to-
pographic features that allowed for the verification that all
systematic sources of error that can affect the geometric and
geolocation quality of the returns were accounted for. The
calibration or boresight adjustment of an ALS ensured that
returns were consistent with each other (within same and
different flight lines) and reduced data artifacts. The point
clouds obtained for the CAL/VAL area were visually and an-
alytically checked and parameters were adjusted to improve
the geometric quality of the returns when the point cloud
was regenerated. Through this iterative process the calibra-

tion was refined to obtain a final set of calibration parameters
that were applied to the range data for the entire project to
produce the point clouds of each flight line. Each data return
was positioned in three-dimensional space by horizontal co-
ordinates in US Geological Survey Transantarctic Mountains
Projection (epsg projection 3294) and vertical coordinate in
meters above the World Geodetic Survey 1984 (WGS84) el-
lipsoid.

In addition to the geolocation information, each return
contains information regarding the strength of the backscat-
tered energy (intensity) and the GPS time for the emission of
the laser pulse. The point clouds are encoded following the
American Society of Photogrammetry and Remote Sensing
(ASPRS) LAS 1.2 laser return file format (.las). The point
clouds produced for each flight line are referred to as strips
(Fig. 6a). Because of the complexity of some strips, their
size, and overlap with adjacent strips, the strips were com-
bined and the coverage re-organized into orthogonal tiles of
dimension 1 km× 1 km, as illustrated in Fig. 6, for simplicity
in handling and further processing.

Once the point cloud was organized into tiles, the final step
removed atmospheric noise, multipath returns, and outlier re-
turns using a combination of automated algorithms and man-
ual editing. Data from overlapping flight lines within a given
tile might have been collected on different flights. Further-
more, because the vertical GPS trajectory solution may vary
within a few decimeters, it was necessary to adjust the ele-
vation of each flight strip to remove any possible bias. El-
evation adjustments were performed with Terrasolid Terra-
Match software. For each tile TerraMatch compared the ele-
vations of the different flight lines within common coverage
areas and computed vertical adjustment values for each flight
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Figure 7. Illustration of assessing uncertainty for airborne lidar sur-
vey (ALS) compared to terrestrial lidar survey (TLS) of an inclined
roof.

line. In addition to ensuring consistency between elevations
of different flight lines, this process can be tied to control
points with well-known elevations such that the adjusted ele-
vations are also consistent with a given vertical datum. After
adjusting for these vertical offsets, the final point cloud tiles
were produced. Of the 28.7 billion adequate returns from the
MDV, about 50 % were discarded due to the ±5◦ swath edge
cutoff and to noise removal, resulting in a total of 14.1 billion
returns in the final point clouds.

The accuracy of the geolocation of the laser returns was
verified against terrestrial laser scanning (TLS) data of build-
ings and structures from McMurdo Station, which were col-
lected by Merrick and Company. Planar building roofs were
selected as reference. A plane was fitted to the TLS data of a
roof using the linear least squares method, and the difference
in elevation (dz) and perpendicular distance to plane were
computed for respective airborne returns for the same planar
roof surfaces (Fig. 7). The advantage of this method over the
traditional methods of collecting kinematic GPS measure-
ments over flat uniform surfaces such as roads and runways
(Heidemann, 2014) is that it permits decomposition of the
accuracy in both horizontal and vertical components. A to-
tal of 35 planes were employed for the accuracy assessment,
consisting of almost 560 000 TLS measurements and a total
of 5008 airborne lidar returns.

The RMSE for the distance-to-plane measurement was
7.6 cm, with a vertical and horizontal component RMSE
of 6.9 and 3.2 cm, respectively. It is important to make
two critical observations regarding these values. First, this
method might provide higher RMSE values than the tradi-
tional method because the geolocation of the TLS dataset
has positional uncertainties higher than a vehicle kinematic
survey, which is generally used as a reference dataset for
the traditional method. Second, the horizontal uncertainty is
probably an underestimate, and while it represents an average
value under constrained conditions (low airplane dynamics,

Figure 8. Shaded relief maps of the McMurdo Dry Valleys based
on aerial lidar surveys conducted from December to January 2014–
2015. A is the northern valleys of Victoria, Barwick, McKelvey,
and Wright with adjacent valleys; B is Beacon Valley and surround-
ings; C is Taylor Valley and surroundings; and D is the southern
Dry Valleys of Garwood, Miers, Marshall, and adjacent valleys. E
is a section of the Asgard ranges, F is Pegasus Airfield, G is the Mc-
Murdo Station area, and H is Capes Royds and Evans. Base map is
the Landsat Image Mosaic of Antarctica (Bindschadler et al., 2008).

600 m range), the horizontal uncertainty can be as high as
20–30 cm under more unfavorable flight conditions.

With the finalized point clouds, irregularly spaced data
were interpolated, using Kriging methods, to a regularly
spaced grid at 1 m intervals, forming digital elevation mod-
els (DEMs). The algorithm was applied to each tile and in-
cluded returns 10 m into the neighboring tiles to avoid tile
boundary artifact. The tiles were mosaicked into large cov-
erage rasters (∼ 400 km2) and converted into ArcGIS eleva-
tion rasters. The gridding, mosaicking, and conversion of the
DEMs was performed using Surfer software (Golden Soft-
ware, Golden, CO). The ArcGIS elevation rasters were used
to produce shaded relief images of the valley images with
standard illumination parameters: Azimuth 315◦, elevation
45◦, and Z factor 1 (Fig. 8).

5 Data products

Three types of data products derived from the lidar survey are
available. Spatial coverage for these products includes five
regions within the McMurdo Dry Valleys (Fig. 9): (1) Taylor
Valley, which also includes Pearse Valley; (2) the northern
valleys, which include Wright, McKelvey, Balham, Barwick,
and the Victoria valleys; (3) the southern valleys, which in-
clude Garwood, Marshall, and Miers valleys and surround-
ing areas; (4) Beacon Valley; and (5) a section of the As-
gard Range. The spatial coverage also includes three ad hoc
regions: (1) the Pegasus aviation facility, (2) McMurdo Sta-
tion and surroundings, and (3) the coastal margin from Cape
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Table 1. Summary of available lidar data products. Returns are the lidar returns from the Earth’s surface; no. of LAS tiles is the number
of point cloud tiles for each section; LAS Gb is the data storage size in gigabytes for the point cloud data; no. of sections is the number
of individual sections that constitute the entire elevation raster for each region; DEM Gb is the data storage size in gigabytes of the digital
elevation model that covers that region; SRM Gb is the data storage size in gigabytes of the shaded relief maps.

Region Coverage area km2 Point cloud products Elevation rasters

Returns ×106 No. of LAS tiles LAS Gb No. of sections DEM Gb SRM Gb

Taylor 852.8 4112.5 944 107.0 3 6.8 1.0
Northern 1289.8 5417.2 1447 141.0 3 10.1 1.6
Southern 755.1 2800.7 827 73.0 2 5.5 0.9
Beacon Valley 316.1 651.4 376 16.9 1 3.1 0.4
Asgard Range 94.8 129.5 136 3.4 1 0.7 0.1
Pegasus 157.8 504.3 181 13.1 1 0.9 0.1
McMurdo 42.3 257.9 59 6.7 1 0.3 0.1
Royds & Evans 63.4 253.3 92 6.6 1 0.9 0.1

Figure 9. Map showing the location and extent of the available lidar
data products. Base map is the Landsat Image Mosaic of Antarctica
(Bindschadler et al., 2008).

Royds to Cape Evans. The lidar data products include clean
point clouds in 1 km× 1 km tiles in the ASPRS .las format,
DEMs in the Esri ArcGIS .flt format, and shaded relief maps
in the Esri ArcGIS .adf format. The ArcGIS rasters have a
horizontal resolution of 1 m. Specifics related to the extent
and file size of these data products for each of the survey
areas are summarized in Table 1.

6 Data availability

The data products in this report can be obtained from
two different data facilities funded by the National Sci-
ence Foundation: Open Topography, www.opentopography.
org (the web page hosting the data can be found at
https://doi.org/10.5069/G9D50JX3, Fountain, 2016) and the
Polar Geospatial Center at www.pgc.umn.edu.

It is important to note that the data formats for each data
product listed in this report correspond to the formats in
which the data products were delivered to OpenTopography
and the Polar Geospatial Center. However, each of these data
repositories may provide the data in different formats de-
pending on their own protocols, and in future the format may
change to follow the evolution of data formats.

7 Summary

We have compiled a high-resolution elevation dataset for
3564 km2 of the McMurdo Dry Valleys, Antarctica, focused
largely (but not exclusively) on the valley bottoms. These
new data, with a return density averaging 5 returns m−2, im-
prove the raster DEM quality compared to the lidar survey
flown in 2002 (Shenk et al., 2004) by a factor of 4, from 2
to 1 m2. We also include an estimate of uncertainties based
on detailed terrestrial lidar surveys of building roofs at Mc-
Murdo Station collected independently from our investiga-
tion. This approach differs from the traditional method of a
vehicle-mounted GPS unit driven over a flat surface of a road
by using inclined surfaces yielding both vertical and hori-
zontal uncertainties. Comparing the elevations of 35 inclined
building roofs, our RMSE uncertainty is ±0.07 m in the ver-
tical and ±0.03 m in the horizontal. However, we recognize
that the horizontal uncertainty may be as much as 1 order
of magnitude higher due to poor flight conditions. In addi-
tion to the primary mission of the project, we also surveyed
nearby regions, including the Pegasus aviation facility on the
McMurdo Ice Shelf, and two localities on Ross Island, the
region covering McMurdo Station and Scott Base, and the
coastal margin from Cape Royds to Cape Evans. Data prod-
ucts include point clouds provided in 1 km× 1 km tiles, 1 m
resolution digital elevation models, and shaded relief maps.
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